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Abstract. A variable separation procedure for the Davey–Stewartson (DS) equation is proposed
by using a prior ansatz to its bilinear form. The reduced equations for two variable separated
fields have the same trilinear form although they possess different independent variables. The
trilinear equation can be changed to a spacetime symmetric form and can be solved by means
of a Boussinesq-type equation system. Whenever a pair of solutions of the reduced fields are
obtained, a corresponding solution of the DS equation can be obtained algebraically. The single
dromion solution and some kinds of positon solutions are obtained explicitly.

There are a wealth of methods for finding special solutions of a nonlinear partial
differential equation (PDE). Some of the most important methods are the inverse scattering
transformation (IST) approach [1], the bilinear (BL) method [2], symmetry reductions (SR)
[3], Bäcklund and Darboux transformations (BT and DT) [4] etc. In comparison with the
linear case, it is known that IST is an extension of the Fourier transformation in the nonlinear
case. In addition to the Fourier transformation, there is another powerful tool called the
variable separation method in the linear case. However, there is little progress on obtaining
some special solutions by means of a corresponding variable separation method in the
nonlinear case. Recently, a kind of ‘variable separating’ procedure has been established by
means of symmetry constraints [5, 6]. In this approach, although the independent variables
of a reduced field have not totally been separated, the field satisfies some lower-dimensional
equations. Each reduced equation does not contain one (or more) independent variable(s)
explicitly. For example, in [6], it has been pointed out that for the Kadomtsev–Petviashvili
(KP) equation, ifone field(which depends on three variables,x, y and t) satisfies not only
a (1 + 1)-dimensional equation (nonlinear Schrödinger (NLS) equation) for the variables
x and y, but also another(1 + 1)-dimensional equation (modified KdV equation) for the
variablesx and t , then a corresponding solution of the KP equation can be obtained.

Now an interesting question is: Can we find some nontrivial special solutions of an
(n+ 1)-dimensional integrable model fromtwo reduced fields defined on some subspaces?
In this paper we shall present a variable separation procedure for a(2 + 1)-dimensional
integrable model, the Davey–Stewartson (DS) equation, by solving its bilinear form and
introducing a prior ansatz. It is shown that whentwo fields, f (x, t) and g(y, t), which
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depend only on spacetime(x, t) and (y, t), respectively, satisfytwo (1 + 1)-dimensional
integrable models, the corresponding solutions of the DS equation can be obtained from
every pair of solutions of these two field equations.

The DS equation can be written in some variant but equivalent forms. Here we use the
same form as in [7]:

iut + uXX + uYY − 4u|u|2 − 2uv = 0 (1)

vXX − vYY + 4(|u|2)XX = 0. (2)

This system is the shallow water limit of the Benney–Roskes equation [8], whereu is the
amplitude of a surface wavepacket andv characterizes the mean motion generated by this
surface wave. The DS equations system (1) and (2) can also be obtained from the suitable
reduction of a self-dual Yang–Mills equation [9].

Introducing new dependent variablesF (real) andG (complex) by

u = G

F
v = −2∂2

x logF (3)

and rotating the coordinate axes by 45◦, equations (1) and (2) can be written as

(iDt +D2
x +D2

y)G · F = 0 (4)

DxDyF · F = 2|G|2 (5)

whereD is the usual bilinear operator [10] defined by

Dm
t D

n
xD

p
y F ·G ≡ (∂t − ∂t ′)

m(∂x − ∂x ′)n(∂y − ∂y ′)pF (x, y, t) ·G(x ′, y ′, t ′)|x=x ′,y=y ′,t=t ′ . (6)

Usually, one uses the bilinear form (4) and (5) to get the multisoliton solution by
assuming thatF andG are only a sum of several exponentials ofηi = kix+ liy+ωit + δi .
In order to get some different solutions of the DS equation, we look for the solutions of (4)
and (5) by means of a variable separation procedure. From the trivial solution of (4) and
(5),G = 0 andDxDyF ·F = 0, we may get a hint about their nontrivial solution(G 6= 0):
F can be assumed to possess the following variable separation form,

F = f1(x, t)− g1(y, t)+ cf1(x, t)g1(y, t) (7)

wheref1(= f1(x, t)) and g1(= g1(y, t)) are y and x independent, respectively, andc is
an arbitrary constant. Substituting equation (7) into (5) and writingG also in a variable
separation form,

G = p(x, t)q(y, t)exp i(r(x, t)+ s(y, t)) (8)

we find thatp = p(x, t) andq = q(y, t) should be related tof1 andg1 by

p = f
1
2

1x q = g
1
2
1y. (9)

After substituting equations (7) and (8) with (9) into equation (4) and vanishing both real
and imaginary parts, respectively, we obtain

g2
1y(f

2
1xx − 2f1xf1xxx + 4f 2

1x(rt + r2
x ))+ f 2

1x(g
2
1yy − 2g1yg1yyy + 4g2

1y(st + s2
y )) = 0 (10)

−
[

2(1 + cg1)g
2
1yf

2
1x − (f1 − g1 + cf1g1)f1xg

2
1y
∂

∂x

]
(f1t + 2f1xrx)

+
[

2(1 − cf1)f
2
1xg

2
1y + (f1 − g1 + cf1g1)f

2
1xg1y

∂

∂y

]
×(g1t + 2g1ysy) = 0. (11)
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According to the fact thatf1 andr are only functions ofx and t andg1 ands are only
functions ofy and t , we can obtain the following four equations,

f1t + 2f1xrx + c1(t)(1 − cf1) = 0 (12)

g1t + 2g1ysy + c1(t)(1 + cg1) = 0 (13)

4rtf
2
1x + 4f 2

1xr
2
x + f 2

1xx − 2f1xf1xxx − c2f
2
1x = 0 (14)

and

4stg
2
1y + 4g2

1ys
2
y + g2

1yy − 2g1yg1yyy + c2g
2
1y = 0 (15)

wherec1 = c1(t) and c2 = c2(t) introduced in the variable separation procedure are two
arbitrary functions oft .

From equations (12) and (13), we have(c 6= 0)

r(x, t) = −
∫ x ft

2fx
dx + c3(t) (16)

and

s(y, t) = −
∫ y gt

2gy
dy + c4(t) (17)

with

f =
(
f1 − 1

c

)
B−1 g =

(
g1 + 1

c

)
B B = exp

∫ t

cc1(t
′) dt ′ (18)

and c3 = c3(t) and c4 = c4(t) being integration functions of timet . Substituting
equations (16) and (17) into equations (14) and (15) leads to two(1 + 1)-dimensional
equations about fieldsf (x, t) andg(y, t), respectively:

−2f 2
x

∫ x
(
ft

fx

)
t

dx + f 2
x (4c3t − c2)− 2fxfxxx + f 2

xx + f 2
t = 0 (19)′

−2g2
y

∫ y
(
gt

gy

)
t

dy + g2
y(4c4t + c2)− 2gygyyy + g2

yy + g2
t = 0. (20)′

Dividing equations (19)′ by f 2
x and differentiating the result equation once with respect to

x, we get a trilinear differential equation

fxxf
2
t + fttf

2
x − 2ftfxtfx + f 3

xx + f 2
x fxxxx − 2fxfxxfxxx = 0. (19)

In the same way, equation (20)′ can be rewritten as

gyyg
2
t + gttg

2
y − 2gtgytgy + g3

yy + g2
ygyyyy − 2gygyygyyy = 0. (20)

Actually, equation (20) possesses the same form as equation (19) simply by the
transformationg → f , y → x. This symmetry is a natural result of the fact that the
DS system (equations (1) and (2) and/or its bilinear form (4) and (5)) is symmetric with
respect to space variablesx andy. The integrability of equation (19) is guaranteed by the
integrability of the DS equation.

Now the important conclusion is that whenever we get any pair of solutionsf (x, t)

andg(y, t) (one from equation (19) and the other from (20)), we can get a corresponding
solution of the DS equation. The space variablesx andy have been completely separated
to f andg, respectively.

It is necessary to point out that when we get a pair of solutionsf andg from (19) and
(20), the functionsc3 andc4 appearing in equations (16) and (17) should be determined by
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substituting the solutions into equations (19)′ and (20)′ because equations (19)′ and (20)′

are the integral form of equations (19) and (20).
To give out concrete solutions of equations (19) and (20) is still very difficult. Here

we write down only some special solutions of equations (19) and (20) (and then the DS
equation). The simplest solutions of equations (19) and (20) possess exponential forms

f = a0 + a exp(kx + ωt) ≡ a0 + a expµ1

g = b0 + b exp(ly +�t) ≡ b0 + b expµ2 (21)

with arbitrary constantsa0, b0, a, b, k, l, ω and�. For solutions (21), the integral functions
c3 andc4 should be fixed as

c3 = 1

4k2

(
k2

∫ t

c2(t
′) dt ′ + (k4 − ω2)t

)
c4 = 1

4l2

(
− l2

∫ t

c2(t
′) dt ′ + (l4 −�2)t

)
.

Substituting equations (7) and (8) with equations (9), (16)–(18) and (21) into equation (3)
we get a so-called dromion solution,

u = [(akbl)
1
2 exp i{−ωx/(2k)−�y/(2l)+ c3 + c4}]

×[α exp((−µ1 − µ2)/2)+ β exp((µ1 − µ2)/2)

+γ exp((µ2 − µ1)/2)+ δ exp((µ1 + µ2)/2)]
−1 (22)

with α = a0B
−1 − b0B+ (2/c)+ a0b0, β = B−1a(1+ b0B), γ = bB(a0B

−1 − 1), δ = cab.
Solution (22) decays exponentially inall directions after selectingα, β, γ andδ to possess
same signs andabkl > 0. If the functionsc3 and c4 are linear int (i.e. c2 = constant)
and c1(t) = 0(B = 1), the dromion solution (22) is just that obtained by other authors
using different approaches such as the BT [11], IST [11, 12] and BL direct method [7, 13].
Some arbitrary functions oft (c2 andB(t)) have entered into solution (22). Actually, some
arbitrary functions of timet can be included in the dromion solutions because the DS
model possesses an infinite-dimensional Lie symmetry group which contains some arbitrary
functions of timet [14–16].

It is not very difficult to find out the travelling-wave solutions of equation (19) (and
(20)). In addition to the exponential solution (21), one can find four (and only four) other
types of solutions:

(i)

f = a(kx + ωt + x0)+ a0 g = b(ly +�t + y0)+ b0

c3 = 1

4k2

(
k2

∫ t

c2(t
′) dt ′ − ω2t

)
c4 = 1

4l2

(
− l2

∫ t

c2(t
′) dt ′ −�2t

)
. (23)

(ii)

f = a(kx + ωt + x0)
3 + a0 g = b(ly +�t + y0)

3 + b0

c3 = 1

4k2

(
k2

∫ t

c2(t
′) dt ′ − ω2t

)
c4 = 1

4l2

(
− l2

∫ t

c2(t
′) dt ′ −�2t

)
. (24)

(iii)

f = a((kx + ωt)+ sinh(kx + ωt + x0))+ a0

g = b((ly +�t)+ sinh(ly +�t + y0))+ b0

c3 = 1

4k2

(
k2

∫ t

c2(t
′) dt ′ + (k4 − ω2)t

)
c4 = 1

4l2

(
− l2

∫ t

c2(t
′) dt ′ + (l4 −�2)t

)
.

(25)
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(iv)

f = a((kx + ωt)+ sin(kx + ωt + x0))+ a0

g = b((ly +�t)+ sin(ly +�t + y0))+ b0

c3 = 1

4k2

(
k2

∫ t

c2(t
′) dt ′ − (k4 + ω2)t

)
c4 = 1

4l2

(
− l2

∫ t

c2(t
′) dt ′ − (l4 +�2)t

)
.

(26)

The positon solutions (which are locally singular) have been widely investigated in
literature for various(1+ 1)-dimensional integrable models like KdV, mKdV, sine–Gordon
and Toda-lattice etc [17]. Now we can construct many kinds of positon solutions of the DS
equation by selecting any pair of solutionsf andg in equations (23)–(26).

To find out more solutions off (andg) and then the DS equation, one should look for
the non-travelling-wave solutions of (19) (and (20)). However, we just give some remarks
concerning equation (19) here instead of solving it.

(i) After making a spacetime transformation,

ξ = x + 1
2t τ = x − 1

2t (27)

we can write (19) as

fξξf
2
τ + fττf

2
ξ − 2fξfτfξτ + (fξξ + 2fξτ + fττ )

2 + (fτ + fξ )
2

×(fξξξξ + 4fξξξτ + 6fξξττ + 4fξτττ + fττττ )− 2(fξ + fτ )

×(fξξ + 2fξτ + fττ )(fξξξ + 3fξξτ + 3fξττ + fτττ ) = 0. (28)

It is interesting that equation (28) is symmetric with respect to the new ‘spacetime’{ξ, τ }.
Actually, equation (19) will be symmetric for a more generalized transformation,ξ = x+at ,
τ = x + bt . To find some spacetime symmetric integrable models is also an interesting
work because of the requirements of relativistic physics.

(ii) Using the following transformations(∂x∂−1
x = 1),

fx = exp∂−1
x φ (29)

ft = ψfx (30)

the trilinear equation (19) can be changed to a Boussinesq-type coupled equation system

ψt = −φxx − φφx + ψψx (31a)

φt = ψxx + (ψφ)x (31b)

where equation (31b) is obtained by differentiating equation (30) twice with respect tox.
Once the multisoliton solutions of the equation system (31) are obtained, the corresponding
multidromion solutions of the DS equation can be obtained by using the transformation
relations (29), (30), (16)–(18), (7)–(9) and (3). Substituting equation (21) into (29) and (30)
yields

φ = k ψ = ω/k. (32)

Equation (32) means that the single dromion solution of the DS equation can be obtained
from the constant solution of the Boussinesq-type equation (31).

(iii) Though there are some different Boussinesq-type equations, they cannot be changed
to the form of (31). One of the most similar equation is the so-called Broer–Kaup system
[18],

ut = −uxx + 2uux + 2hx (33a)

ht = hxx + 2(hu)x (33b)
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which also possesses a trilinear form [19]:

τ(τ 2
xxx − τxxτxxxx − τ 2

xt + τxxτtt )− τxxτ
2
t − τtt τ

2
x + 2τt τxt τx

+τ 3
xx + τ 2

x τxxxx − 2τxτxxτxxx = 0. (34)

Equation (34) can also be changed into a ‘spacetime’ symmetric form by using a similar
transformation as equation (27). Obviously, equations (19) and (34) cannot be transformed
into each other because of the first term of (34) and the different signs of theirt-derivative
terms. The problem of how to solve the trilinear equation (19) and/or the Boussinesq-type
equation (31) will be studied in a future work.

In summary, using a prior variable separation ansatz to the DS equation, some special
solutions of the DS equation can be obtained by means of two(1 + 1)-dimensional
Boussinesq-type systems which can be written as trilinear forms. The trilinear equations
of two (1+ 1)-dimensional fields possess the same form but with different space variables.
Combining each solution of one equation with that of the other, we will obtain a
corresponding solution of the DS equation. The usual single dromion solution is just the
special case in which the solutions of two(1+1)-dimensional trilinear equations are all fixed
as the exponentials. Many kinds of positon solutions can be found in the(2+1)-dimensional
integrable DS equation. Finally, we should point out that the variable separation method
proposed here can only obtain some special solutions as in other powerful methods. The
problem of how to extend the variable separation method to other models and how to get
more solutions of the Boussinesq-type equation (31) are worth further studies.
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